
EE 330
Lecture 4

• Yield
• Statistics Review



Device and Die Costs
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Characterize the high-volume incremental costs of manufacturing integrated circuits

Example:     Assume manufacturing cost of  an 8” wafer in a 0.25µ process is  $800

Determine the number of minimum-sized transistors that can be 
fabricated on this wafer and the cost per transistor.  Neglect spacing and 
interconnect. 
Solution:

94.15$
112.5

800$
−=== E

En
C

C
trans

wafer
trans

Note:  the device count may be decreased by a factor of 10 or more if
Interconnect and spacing is included but even with this decrease, the 
cost per transistor is still very low!

(520 Billion!)
(Trillion, Tera …1012)



Device and Die Costs

2/5.2$ cmC areaunitper ≅

Actual integrated op amp will be dramatically less if bonding pads are not needed

Example:  If the die area of the 741 op amp is 1.8mm2 (including bonding pads), determine 
the cost of the silicon needed to fabricate this op amp

( ) 05$.8.1/5.2$ 22
741 ≅•= mmcmC

At $800/8” wafer, it can be easily shown that:



Physical Characteristics of Key 
Semiconductor Materials

o
A7.2
o
A4.5

o
A5.3

Silicon:  Average Atom Spacing 

Lattice Constant

SiO2 Average Atom Spacing

Breakdown Voltage

20KV/cmAir

0
A10mV/to510MV/cmto5 =

Physical size of atoms and molecules place fundamental 
limit on conventional scaling approaches



Defects in a Wafer

Defect
•  Dust particles and other undesirable 
processes cause defects
•  Defects in manufacturing cause yield loss



Yield Issues and Models
• Defects in processing cause yield loss
• The probability of a defect causing a circuit failure 

increases with die area
• The circuit failures associated with these defects are 

termed Hard Faults
• This is the major factor limiting the size of die in 

integrated circuits
• Wafer scale integration has been a “gleam in the eye” of 

designers for 3 decades but the defect problem 
continues to limit the viability of such approaches

• Several different models have been proposed to model 
the hard faults



Yield Issues and Models
• Parametric variations in a process can also 

cause circuit failure or cause circuits to not meet 
desired performance specifications (this is of 
particular concern in analog and mixed-signal 
circuits)

• The circuits failures associated with these 
parametric variations are termed Soft Faults

• Increases in area, judicious layout and routing, 
and clever circuit design techniques can reduce 
the effects of soft faults



Hard Fault Model

Ad
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YH is the probability that the die does not have a hard fault
A is the die area
d is the defect density
 (for some older processes, typically 1cm-2 < d < 2cm-2)
 for some newer processes, typically  0.1cm-2<d<1cm-2) 

Industry often closely guards the value of d for their process

Other models, which may be better, have the same general functional form



Some processes have d under  0.1cm-2

• Aug 2020 article
• Defect density in per cm2

• Smaller processes even have better defect density!!
• Note continued reduction predicted as process matures

Start of high 
volume production



Example:

Ad
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Determine the hard yield of a die of area 
1cm2 if the defect density is 1.5cm-2

A=1cm2

d=1.5cm-2

1 1.5
HY e 0.22− •= =

How good must the defect density be if we must 
obtain a 95% yield for the 1cm2 die? 

A=1cm2

YH=0.95

1 d0.95 e− •= d=-ln(0.95) d=0.05cm-2



Soft Fault Model
Soft fault models often dependent upon design 

and application

kA
ρσ =

Often the standard deviation of a parameter is 
dependent upon the reciprocal of the square root 
of the parameter sensitive area

ρ is a constant dependent upon the architecture and the process

Ak is the area of the parameter sensitive area



Soft Fault Model
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PSOFT is the soft fault yield
f(x) is the probability density function of the parameter of interest
XMIN and XMAX define the acceptable range of the parameter of interest

Some circuits may have several parameters that must meet 
performance requirements

XMIN XMAX



Soft Fault Model
If there are k parameters that must meet parametric 
performance requirements and if the random variables 
characterizing these parameters are uncorrelated, then the 
soft yield is given by
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Overall Yield

If both hard and soft faults affect the yield of 
a circuit, the overall yield is given by the 
expression

SHYYY =



Cost Per Good Die
The manufacturing costs per good die is given by

Y
CC FabDie

Good =

where CFabDie is the manufacturing costs of a fab die and Y is the yield

There are other costs that must ultimately be included such as testing 
costs, engineering costs, packaging costs,  etc.



Example:  Assume a die has no soft fault 
vulnerability, a die area of 1cm2 and a process has 
a defect density of 1.5cm-2

a) Determine the hard yield 
b) Determine the manufacturing cost per 

good die if 8” wafers are used and if the 
cost of the wafers is $1200



Solution
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37.17$
0.22
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Do you like statistics ?



Statistics are Real!

Statistics govern what really 
happens throughout much of the 
engineering field!

Statistics are your Friend  !!!!
You might as well know what will happen since statistics characterize what 
WILL happen in the presence of variability in many processes !



Statistics Review

f(x) = Probability Density Function for x

Assume x is a random variable of interest

F(x) = Cumulative Density Function for x
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Statistics Review
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f(x) = Probability Density Function for x
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Statistics Review
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F(x) = Cumulative Density Function for x
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Statistics Review
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Theorem 1:  If the random variable x is normally distributed with mean µ and 

standard deviation σ, then                    is also a random variable that is normally 

distributed with mean 0 and standard deviation of 1.  
σ
µ−

=
xy

(Normal Distribution and Gaussian Distribution are the same)



Statistics Review

σ
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The random part of many parameters of microelectronic circuits is often 

assumed to be Normally distributed and experimental observations confirm that 

this assumption provides close agreement between theoretical and experimental 

results

The mapping                                    is often used to simplify the statistical 

characterization of the random parameters in microelectronic circuits 

x generally is dimensioned,  y is dimensionless



Statistics Review
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Example:

x might be the frequency of oscillation of a ring oscillator used for a clock in 
a crystal-less digital circuit, x Gaussian (Normal) 

Dimensions of x :  Hz
Maybe µ=550 MHz    σ=50 MHz

is dimensionless with µy=0   σy=1

y:     N(0,1)



Statistics Review
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Example:

x might be the offset voltage of an op amp, x Gaussian (Normal) 

Dimensions of x :  Volts
Typically  µ=0V    σ=10 mV

is dimensionless with µy=0   σy=1

y:     N(0,1)



Background Information

Theorem 2:  If x is a Normal (Gaussian) random variable with mean μ and 
standard deviation σ, then  the probability that x is between x1 and x2 is given 
by 

( ) ( )n∫ ∫
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and where  fn(x) is N(0,1)



Background Information
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Background Information
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Observation:  The probability that the N(0,1) random variable xn satisfies the 
relationship x1n<xn<x2n is also given by

where Fn(x) is the CDF of  xn. 

xn

fn

0x1n x2n

( )n 2n n 1np F x F x( )= −

Since the N(0,1) distribution is symmetric around 0, p can also be expressed as 

( ) ( )n 2n n 1np F x 1 F x( )= − − −



Background Information

Observation:  In many electronic circuits, a random variable of interest, x, is 0 
mean Gaussian and the probabilities of interest are characterized by a region 
defined by the magnitude of the random variable (i.e. –x1< x < x1).  

In these cases, if we define

( ) ( ) ( ) ( ) ( )
1 1n

1 1n

x x

1 1 n n 1n n 1n
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p x x x f x dx f x dx F x F x
− −

− < < = = = − −∫ ∫

( ) ( )n 1n n 1nF x 1 F x− = −

therefore: ( )n 1np 2F x 1= −

x - 0x  = 
σN

But for the N(0,1) distribution

x
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x - 0x  = 
σN

0,µ = σ

then xN is N(0,1)  and



Background Information

( )n 1np 2F x 1= −
xN

fn

-x1N 0 x1N

( )n 2n n 1np F x F x( )= −

xn

fn

0x1n x2n

Regardless of whether Gaussian performance requirements are asymmetric or 
symmetric, the CDF of the N(0,1) distribution  (i.e. Fn(xn))  can be used to characterize 
yield 



Background Information

Tables of the CDF of the N(0,1) random variable are readily available.  It is 
also available in Matlab, Excel, and a host of other sources.  

http://www.math.unb.ca/~knight/utility/NormTble.htm



Background Information

Tables of the CDF of the N(0,1) random variable are readily available.  It is 
also available in Matlab, Excel, and a host of other sources.  



Background Information

Example:  Determine the probability that the N(0,1) random variable has 
magnitude less than 2.6

x

f

-2.6 2.60

( )np 2F 2 6 1.= −

From the table of the CDF,  Fn(2.6) = 0.9953   so  p=.9906  



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 
offset voltage requirement of 5mV if the offset voltage has a Gaussian 
distribution with a standard deviation of 2.5mV and a mean of  0V.

x
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5mV0-5mV

( ) ( ) ( ) ( )
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y
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-2 20

x - 0mVy = 
2.5mV

( )Np = 2 F 2 -1 ∗

0mV
2.5mV

µ =
σ =

It can be shown that the circuit designer has control of the offset voltage of an op amp 
and through architecture and sizing of devices can set the standard deviation of the 
offset voltage at almost any level.  Invariably low offset voltages require larger area. 



Background Information

http://www.math.unb.ca/~knight/utility/NormTble.htm

Example (continued)



Background Information

Determine the soft yield of an operational  amplifier that has an offset voltage 
requirement of 5mV if the offset voltage has a Gaussian distribution with a 
standard deviation of 2.5mV and a mean of  0V.

x

f

5mV0-5mV
y

fN

-2 20

x-0y = 
2.5mV

p = 2 .9772-1 = .9544∗

( )NF 2 =0.9772

( )Np = 2 F 2 -1 ∗

Example (continued)



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 
offset voltage requirement of 5mV if the offset voltage has a Gaussian 
distribution with a standard deviation of 3.5mV and a mean of  0V.

x
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Repeat the previous example if the designer decided to reduce the area so that the 
standard deviation increased to 3.5 mV 



Background Information

http://www.math.unb.ca/~knight/utility/NormTble.htm

Example (continued)



Background Information

Example:  Determine the soft yield of an operational  amplifier that has an 
offset voltage requirement of 5mV if the offset voltage has a Gaussian 
distribution with a standard deviation of 3.5mV and a mean of  0V.

x

f

5mV0-5mV y
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-1.43 1.430

x - 0mVy = 
3.5mV

( ) 0 9236Np = 2 F 1.43 -1 =2 . -1=0.847∗ ∗

0mV
3.5mV

µ =
σ =

Repeat the previous example if the designer decided to reduce the area so that the 
standard deviation increased to 3.5 mV 

This small change in the design dropped the yield from just over 95% to just 
under 85% 
Statistical analysis is critical for predicting performance capabilities of many ICs  ! 



Many Companies Promote the Real 
Six-Sigma Challenge

Six Sigma (6σ) is a set of techniques and tools for process improvement. It 
was introduced by American engineer Bill Smith while working at Motorola in 
1986.[1][2] A six sigma process is one in which 99.99966% of all opportunities to 
produce some feature of a part are statistically expected to be free of defects.

From Wikipedia   Sept 1  2021

https://en.wikipedia.org/wiki/Bill_Smith_(Motorola_engineer)
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-ssorigin-1
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-Tennant6-2


Many Companies Promote the Real 
Six-Sigma Challenge

From Wikipedia   Sept 1  2021

In 2005 Motorola attributed over $17 billion in savings to Six Sigma.[3]

By the late 1990s, about two-thirds of the Fortune 500 organizations had begun 
Six Sigma initiatives with the aim of reducing costs and improving quality.[6]

https://en.wikipedia.org/wiki/Six_Sigma#cite_note-motsaving-3
https://en.wikipedia.org/wiki/Fortune_500
https://en.wikipedia.org/wiki/Six_Sigma#cite_note-Juran-6


Yield at the Six-Sigma level 

6-6

( ) 162FY N6sigma −=

(Assume a Gaussian distribution)

Y6sigma=0.9999999980

This is approximately 2 defects out of 1 billion parts



Yield at the Six-Sigma level 

6-6

This is approximately 2 defects out of 1 billion parts

Would producing ICs with a yield at the six-sigma level be a good goal?

How about smart phones with defects at this level? (approx. 1.4B sold in 2020)   

How about automobiles?  (approx. 78 million produced in 2020)



Six-Sigma or Else !!
How serious is the “or Else” in the six-sigma programs?



It is assumed that the performance or yield will drop, for some reason, by 
1.5 sigma after a process has been established

Initial  “six-sigma” solutions really expect only 4.5 sigma performance in 
steady-state production

4.5 sigma performance  corresponds to  3.4 defects in a million

Six-Sigma 
or Else !!

Observation:  Any  Normally distributed random variable can be mapped to a 
N(0,1) random variable by subtracting the mean and dividing by the variance

Assumption :  Processes of interest are Gaussian (Normal) 



Meeting the Real Six-Sigma 
Challenge

Six-Sigma 
or Else !!

Highly Statistical Concept !



The Six-Sigma Challenge

Long-term Capability Short-term Capability

Tails are 6.8 parts in a million Tail is 2 parts in a billion

Two-sided capability:

Six Sigma Performance is Very Good !!!

x

f

4.5σ-4.5σ
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6σ0

f

-6σ



Example:  Determine the maximum die area if the circuit 
yield is to initially meet the “six sigma” challenge for hard 
yield defects (Assume a defect density of 1cm-2 and only 
hard yield loss).  Is it realistic to set six-sigma die yield 
expectations on the design and process engineers?

Solution:

6-6

The “six-sigma” challenge
requires meeting a 6 
standard deviation yield with 
a Normal (0,1) distribution

( ) 162FY N6sigma −=

FN(6)=0.9999999980Recall:  

6sigmaY 0.999999996=



Solution cont:

Ad
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A 4.0E 9cm 40E6(A)
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This is  comparable to the area required to fabricate about 100 minimum-
sized transistors in a state of the art 20nm process

200Å
Consider a 20nm process with 
10x  area  overhead

( )2 2 2A 10 * 200 ( ) 4 5( )= =
o o

TRAN A E A
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2

o
2

40E6 An 100
4E5 A

( )

( )
= =

6300A



Solution cont:

Is it realistic to set six-sigma die hard yield 
expectations on the design and process engineers?

The best technologies in the world have orders of 
magnitude too many  defects to build any useful 
integrated circuits with die yields that meet six-sigma 
performance requirements !!

Arbitrarily setting six-sigma design 
requirements will guarantee financial disaster !!



Meeting the Real Six-Sigma 
Challenge

Six-Sigma 
or Else !!



Meeting the Real Six-Sigma 
Challenge

Six-Sigma 
or Else !!

Improving a yield by even one sigma often is 
VERY challenging !!



Meeting the Real Six-Sigma Challenge

Six-Sigma 
or Else !!

So, how has Motorola prospered with “meeting” the 6-
sigma challenge?



Stay Safe and Stay Healthy !



End of Lecture 4
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